LABEL-FREE IMMUNOSENSOR FOR HERBICIDE TRIFLURALIN DETECTION

using OPTICAL WAVEGUIDE LIGHTMODE SPECTROSCOPY (OWLS) detection

Abstract

Acting as a potent microtubule inhibitor, the dinitroaniline herbicide trifluralin has been used in agricultural applications as a selective, pre-emergence herbicide in various plant cultures including grain, crops, vegetables, fruits and nuts. In recent years, the compound is a subject to increasing toxicological and environmental concerns. OWLS offered a highly sensitive label-free method to develop immobilized antigen-BSA conjugate based competitive immunosensor.

Application of OWLS sensors

as competitive immunosensor for the detection of trifluralin

Surface Chemistry of OWLS sensors

- Amino functionalisation of waveguide surface by (γ-aminopropyl)triethoxysilane
- Immobilisation of trifluralin-BSA conjugate on the OWLS sensor surface.

Sensitization of the sensor surface with trifluralin-BSA conjugate

Optimization of antiserum dilution

Sensor response for different polyclonal serum dilutions was investigated.

Standard inhibition curve

of the immobilized antigen conjugate based competitive trifluralin immunosensor

Cross-reactivity

of dinitroaniline herbicides, haptens and various synthetic intermediates in the competitive OWLS immunosensors:

Compound	CR (%) (OWLS sensor)
Trifluralin	100
Ethalfluralin	6,9
Benfluralin	3,4
Isopropalin	0,26
2,6-Dinitro-4-trifluoromethylaniline	0,09
Pendimethalin	>0,01
2,6-Dinitro-4-trifluoromethyl-1-	>>0,01
chlorobenzene	
2,6-Dinitroaniline	>>0,01
Aniline	>>0,01

Conclusion

A competitive or binding inhibition (immobilized antigen-based) OWLS immunosensor was developed and optimized for the detection of trifluralin. The OWLS sensor was optimized for major method parameters, such as sensitizing antigen concentration (10 μgml^{-1}) and antiserum dilution (1:2000) and offered a standard curve for trifluralin in the analyte concentration range of 2 x 10 $^{-7}$ to 3 x 10 $^{-5}$ ngml $^{-1}$ in water.

References

- Vörös, J. J. Ramsden, G. Csucs, I. Szendrő, S.M. De Paul, M. Textor, N. D. Spencer "Optical Grating Coupler Biosensors" Biomaterials 23 (2002) 3699-3710
- Székács A., Trummer N., Adányi N., Váradi M., Szendrő I. "Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection", Analytica Chimica Acta 487, 2003, 31-42
- 3. <u>www.owls-sensors.com</u>